Home >> [#contents*] >> 1st-laser Knowledge 2 page




[#@content&*]

.

.

Previous page: page 1      Next page: page 3



[#@radomtable&*]



Related Article

Designing an Enclosed Laser Marking Workstation to Meet Class 1 Laser Safety Standards for ABS Marking    

Real-Time AI Vision Inspection for ABS Laser Marking Defects    

Enhancing Adhesive Bonding on ABS through Laser-Induced Micro-Texturing    

Laser Marking on ABS: Enhancing Adhesion with Micro-Texturing for Glue Bonding    

Digital Twin Technology for Simulating Temperature Field Distribution in ABS Laser Marking    

Optimizing ABS Laser Marking Process via Design of Experiments (DOE)    

The Impact of Sodium Ion Content on Thermal Crack Threshold in Sodium-Calcium Glass Marked by 1064 nm Fiber Laser    

Pulse Energy Requirements for Refractive Index Changes in Quartz Glass Marking with 355 nm UV Laser    

Influence of B₂O₃ Content on Absorption Coefficient in Borosilicate Glass Marking with 10.6 µm CO₂ Laser    

Quantitative Relationship Between Crystallite Size and Fracture Risk in Femtosecond 532 nm Green Laser Marking of Microcrystalline Glass    

Influence of Prestressed Layer on Crack Deviation in 1030 nm Femtosecond Laser Marking of Tempered Glass    

Optimal Power Density Range for Frosted Effect on Wine Glasses Using 10.6 µm CO₂ Laser Marking    

Comparative Contrast of Optical Glass QR Code Marking with 355 nm UV and 266 nm VUV Lasers    

Influence of Focusing Depth on the Threshold of Single-Pulse Energy in 1030 nm Femtosecond Laser Marking of Three-Dimensional Optical Waveguides    

Impact of Pulse Width on the Heat-Affected Zone in Glass Marking with MOPA 1064 nm Fiber Laser    

Invisible Dating on Transparent Glass Bottles with 532 nm Green Light Laser: Optimal Pulse Overlap for Readability    

The Impact of Scanning Speed on Surface Roughness Ra in CO₂ Laser Marking of Glass    

Impact of Hatch Spacing on Channel Depth Uniformity in Glass Microfluidic Chips Marked with 355 nm UV Laser    

Comparative Analysis of Microcrack Density in Glass Marking with 1064 nm Fiber Laser at Pulse Frequencies of 20 kHz and 100 kHz    

Regression Analysis of Line Width and Depth in Glass Scale Marking with Picosecond 532 nm Laser    

Influence of Focus Step Size on the Readability of QR Codes Inscribed in Glass with a 1030 nm Femtosecond Laser Marking Machine    

Achieving Stable Black Oxidation Marking on Glass with 355 nm UV Laser Marking Machine: Energy Density Window Analysis    

Controlling Haze Levels in Glass Sandblasting with 10.6 µm CO₂ Laser Marking    

Achieving Colored Interference Fringes with 532 nm Green Laser Marking on Glass    

Achieving White Marking on Glass Surfaces with 1064 nm Fiber Laser: Avoiding Micro-Cracks    

Maintaining Transparency in High-Aluminum Silicate Glass with 266 nm UV Laser Marking    

The Impact of Preheating on 1064 nm Fiber Laser Marking of Thin Glass    

Optimizing Pulse Energy for 355 nm UV Laser Marking of Glass Microhole Arrays with Crack Lengths <20 µm    

Comparative Experimental Design for Heat Crack Suppression in CO2 Laser Marking of Glass Bottles: Air Cooling vs. Water Cooling    

Comparative Study on Heat Crack Suppression in Glass Bottle Marking with 10.6 µm CO₂ Laser: Air Cooling vs. Water Cooling Assistance    

Modeling Pulse Energy Deposition for Heat Stress Prediction in Femtosecond 1030 nm Laser Marking of Glass    

Controlling Taper Angle to Less Than 5° in Deep Engraving Glass with 10.6 µm CO₂ Laser Marking Machine    

Impact of Dynamic Focusing on Edge Resolution in 3D Curved Glass Marking with 355 nm UV Laser    

Minimizing Crosstalk in Dual-Layer QR Code Marking on Glass with 1064 nm Fiber Laser    

Establishing Depth-Energy Lookup Tables for Multi-Level Depth Grayscale Marking with 1030 nm Femtosecond Laser on Glass    

Optimizing the Fabrication Window for 532 nm Green Laser Marking of Glass Microlens Arrays with a 50 µm Radius of Curvature    

Measuring Microcrack Depth in Glass Marked with 355 nm UV Laser Using Confocal Microscopy    

Achieving Grade A Direct Part Marking (DPM) with 1064 nm Fiber Laser on Glass QR Codes According to ISO/IEC 29158    

Wear Resistance Testing of Frosted Glass Bottles Marked with 10.6 µm CO₂ Laser: Setting ASTM C501 Weight Loss Criteria    

Verification Scheme for Salt Fog Resistance of Scale Lines Marked by Picosecond 532 nm Laser on Glass    

Refractive Index Variation of Intracoronal Markings Made by Femtosecond 1030 nm Laser After Thermal Shock Cycling    

Achieving Readable Invisible Logos on Smartphone Microcrystalline Glass Backs at a 60° Viewing Angle with 355 nm UV Laser Marking    

High-Speed CO₂ Laser Marking of Beer Bottles: Achieving 60,000 Bottles per Hour Production Rate    

Precise Alignment of Optical Lens Crosshairs with a 532 nm Green Laser Marking System    

Achieving FDA UDI Compliance with 1064 nm Fiber Laser Marking on Medical Glass Syringes    

Optimizing Femtosecond 1030 nm Laser Marking for Low Insertion Loss in Optical Waveguide Beam Splitters    

Single-Step Refractive Index Modification and Surface Encoding on Glass with 1030 nm Femtosecond Laser Marking    

Enhancing Glass Microchannel Aspect Ratio through 532 nm Green Laser Marking Combined with Chemical Etching Post-Treatment    

Achieving Superhydrophobic Surfaces on Glass with 355 nm UV Laser Marking    

Assessing the Conductivity of Graphene Patterns Induced by 1064 nm Fiber Laser Marking on Glass    

Integrating 10.6 µm CO₂ Laser Marking and Stealth Dicing in a Single Device    

Configuring HEPA and Activated Carbon Filtration for Nano SiO₂ Dust Generated by 355 nm UV Laser Marking on Glass    

Preventing Optical Path Contamination from Glass Dust in 10.6 µm CO₂ Laser Marking of Glass Bottles    

Class 1 Enclosure Interlock Design for Femtosecond 1030 nm Laser Marking Inside Glass    

Safety Considerations for Plasma-Induced Radiation from 532 nm Green Laser Marking on Glass    

Online Monitoring of Ozone and Silicon Oxide Emissions in Glass Laser Marking Processes Using PID Sensors    

High-Speed CO₂ Laser Marking of Sodium-Calcium Glass Bottles for Date Coding: Ensuring Integrity at 60,000 Bottles per Hour    

Optimizing Duty Cycle for Frosted Logo Marking on Sodium-Calcium Glass Bottles with 10.6 µm CO₂ Laser    

Establishing Durability Standards for Soda-Lime Glass Bottles Marked with 10.6 µm CO₂ Laser for Dishwasher Resistance    

Evaluating Residual Stress in Sodium-Calcium Glass Bottles After 10.6 µm CO₂ Laser Marking    

Online Visual Inspection for Micro-Cracks in Soda-Lime Glass Bottles Marked with 10.6 µm CO₂ Laser    

Evaluating the Adhesion of Ink on Sodium Calcium Glass Bottles Post-10.6 µm CO₂ Laser Marking: An ASTM D3359 Comparative Analysis    

Reduction of CO₂ Laser Marking-Induced Breakage in Sodium Calcium Glass Bottles by Preheating    

Achieving Grade A DPM with 10.6 µm CO₂ Laser Marking on Frosted QR Codes on Sodium Calcium Glass Bottles    

Comparative Efficiency of Wind Knife Angles in Dust Removal During 10.6 µm CO₂ Laser Marking of Sodium Calcium Glass Bottles    

Energy Consumption Analysis of 10.6 µm CO₂ Laser Marking on Sodium Calcium Glass Bottles    

Controlling Ablation Depth for Acrylic Coated Glass with 10.6 µm CO₂ Laser Marking    

Preventing Carbonization of Dye Layer in Color Filter Glass Edge Marking with 355 nm UV Laser    

Optimizing Pulse Energy for MOPA Fiber Laser Marking on Sodium-Calcium Glass Bottles    

Precision Marking of Ultra-Thin Flexible Glass with 1030 nm Femtosecond Laser: Ensuring Integrity in Folding Lines    

Uniformity in Diffuser Laser Marking: Achieving ΔH <2% with 532 nm Green Light Laser    

Inhibition of Delayed Cracking in Low Expansion Borosilicate Glass by 266 nm Deep UV Laser Marking    

Achieving Transparent QR Codes on Frosted Glass Surfaces with 10.6 µm CO₂ Laser Marking    

Avoiding Membrane Delamination and Contrast Degradation in Serial Number Marking on Anti-Reflection Coated Glass with 1064 nm Picosecond Laser    

Single-Step UV Laser Marking of Black Silk-Screen Printed Glass for Control Panels    

Compensation for Focus Drift in 1030 nm Femtosecond Laser Marking of Curved Vehicle Glass HUD Alignment Markers    

UV Laser Marking of Microcrystalline Glass for Smartphone Back Covers: Ensuring Readability at a 60° Viewing Angle    

Optimizing UV Laser Marking on Microcrystalline Glass for Smartphone Back Covers    

Assessing the Adhesion of AF Coating on Crystal Glass Phone Backs After 355 nm UV Laser Marking    

Impact of 355 nm UV Laser Marking on the Flexural Strength of Crystal Glass Mobile Back Covers    

Ensuring Durability of UV Laser-Marked Colorful Anti-Counterfeit Codes on Microcrystalline Glass Phone Backs    

Visual Alignment Accuracy of UV Laser Marking and Screen Printing on Microcrystalline Glass Phone Back Covers    

Online Detection of Micro-Cracks in Microcrystalline Glass Phone Back Covers Using AI Vision Algorithms: Setting the Threshold for 355 nm UV Laser Marking    

Energy Consumption Analysis of 355 nm UV Laser Marking on Microcrystalline Glass Phone Back Covers    

Ensuring Drop Resistance of Crystal Glass Phone Backs After 355 nm UV Laser Marking    

UV Laser Marking of Microcrystalline Glass Phone Back Covers and 5G Antenna Signal Interference Assessment    

Maintaining Channel Wall Roughness Below 100 nm in Borosilicate Glass Microfluidic Chips with 1030 nm Femtosecond Laser Marking    

Achieving a 10:1 Aspect Ratio in 3D Reservoir Chambers of Borosilicate Glass Microfluidic Chips Using 1030 nm Femtosecond Laser Marking    

Minimizing Fluorescence Background in PCR Experiments Post-Femtosecond Laser Marking of Borosilicate Glass Microfluidic Chips    

Minimizing Valve Membrane Damage in Borosilicate Glass Microfluidic Chips with 1030 nm Femtosecond Laser Marking    

Compatibility Testing of 1030 nm Femtosecond Laser Marking with Post-etching HF Process on Borosilicate Glass Microfluidic Chips    

Compatibility of 1030 nm Femtosecond Laser Marking with Post-Etching Processes on Borosilicate Glass Microfluidic Chips    

Measuring Hydrophilicity Changes on Borosilicate Glass Microfluidic Chips After 1030 nm Femtosecond Laser Marking    

Evaluating the Impact of 1030 nm Femtosecond Laser Marking on the Strength of Thermal Bonding in Borosilicate Glass Microfluidic Chips    

Compensation Methods for Z-Axis Focus Drift in 100 µm Thick Borosilicate Glass Microfluidic Chips Using 1030 nm Femtosecond Laser Marking    

Class 1 Enclosure Airflow Organization Design for 1030 nm Femtosecond Laser Marking of Borosilicate Glass Microfluidic Chips    

Embedding NFT Links in Ultraviolet Laser-Marked Glass Bottles for Anti-Counterfeiting Micro-Text Images    

Maintaining Low Optical Loss in AR Glasses Waveguides with 10.6 µm CO₂ Laser Marking on Quartz Glass    

Reliability of Fused Silica Glass Marked with 1030 nm Femtosecond Laser for Vehicle HUD Reflectors Across Temperature Drifts    

Ensuring ISO 10993-5 Cytotoxicity Compliance for Borosilicate Glass Bio-Sensor Windows Marked with 1064 nm Fiber Laser